Signed in as:
filler@godaddy.com
Micronutrients, Health and Disease
There’s a good reason so many health-conscious consumers rely on supplements: supplementation has numerous health benefits and minimizes the risk of many common diseases. The scientific literature is overflowing with studies showing the health benefits of supplements, as well as their disease-preventing effects: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,27,28,29,30]. (For more scientific references about micronutrients' health-promoting and disease-preventing benefits, please refer to Healthy Past 100 by Dr. Steven Teagarden.)
The Many Measures of Health
Health is assessed in many ways; key health measures include lifespan, healthspan, healthy aging, health-related quality of life, and all-cause mortality. These terms are defined as:
• Lifespan—the span of time between birth and death
• Healthspan—the span of time prior to developing chronic diseases like cancer and heart disease
• Healthy aging—the continuance of a high degree of function and wellness into advanced age
• Health-related quality of life—a sense of deep satisfaction with your day-to-day life
• All-cause mortality—the risk of death from any and all causes
Importantly, the appropriate use of dietary supplements can positively affect all of these crucial health measures [31,32,33,34,35,36,37,38,39,40,41,42]. That’s impressive! Everyone has wondered if taking supplements is important, but it’s only in recent years that science has shown just how important supplements are to our health. Taking the right supplements can positively affect how long you live and minimize the risks of succumbing to modern diseases. Nutrition is powerful medicine; providing your cells with the required micronutrients is crucial to your health and wellbeing.
Marginal Micronutrient Deficiencies are Common
Due to their numerous health-sustaining properties, micronutrients are added to everyday foods. These foods are known as fortified foods. Even so, many who regularly consume fortified foods develop marginal micronutrient deficiencies[43]. Marginal micronutrient deficiencies occur when the cellular uptake of essential micronutrients, such as vitamins B1 and C, become slightly deficient. These deficiencies arise in response to inadequate micronutrient intake, stress, rushed meals, alcohol and coffee consumption, single nucleotide polymorphisms (SNPs), and many other prevalent factors in the modern world[44].
Marginal micronutrient deficiencies can cause chronic diseases, a lack of overall well-being, fatigue, impaired immunity, impaired memory, poor concentration, limited attention span, impaired mood, and decreased physical performance[45].
Humans are commonly deficient in several key micronutrients, making supplementation essential for optimal health. Unfortunately, the US Recommended Daily Allowance (RDA) for several essential micronutrients is notoriously low, and many Americans consume micronutrients in amounts below this already low threshold. The figures below show the percentage of Americans deficient in common essential micronutrients.
Percentage of Americans Deficient in Common Essential Micronutrients
Vitamin A 56.2%
Vitamin B1 (Thiamine) 30.2%
Vitamin B2 (Riboflavin) 2.4%
Vitamin B3 (Niacin) 25.9%
Vitamin B4 (Choline) 91.7%
Vitamin B6 (Pyridoxine) 53.6%
Vitamin B9 (Folate) 33.2%
Vitamin B12 (Cobalamin) 17.2%
Vitamin C 42.9%
Vitamin D 95.4%
Vitamin E 93.9%
Vitamin K 71.1%
Calcium 65.1%
Copper 4.2%
Iodine Widespread
Iron 39.1%
Magnesium 68%
Phosphorus 27.4%
Potassium 100%
Selenium 1.1%
Zinc 73.3%
The above figures excerpted from Healthy Past 100 by Dr. Steven Teagarden
Source:[[46],[47],[48],[49]]
The above figures show only some of the micronutrients that humans commonly lack, because many micronutrients have yet to be extensively studied. When fortified cereals and other processed foods are eliminated from the diet, humans may become deficient in Vitamin B2 (riboflavin), making it necessary to supplement with this essential micronutrient. The data is clear and resoundingly states that nutrient deficiencies are the rule, not the exception. This makes supplementation a necessity, not a luxury.
The Heart, Kidneys, Brain and Liver Require More Micronutrients
The heart, kidneys, brain and liver (in that order) are the most metabolically active organs in the body[50]. To fuel their high metabolic demands, these organs create much more energy (ATP) each day than other parts of the body. ATP (adenosine triphosphate) is the fuel your cells create to power their functions. ATP is produced around the clock in the trillions of mitochondria in your body. Your mitochondria churn out as much ATP each day as you weigh; active individuals create twice (or more) their body weight in ATP. The heart alone creates 6 kilograms of ATP daily (13.23 pounds) to pump blood[51]. That’s a lot of ATP!
This is super important, because your mitochondria need a lot of micronutrients to make the ATP that powers your cells. The entire body requires micronutrients to generate a steady supply of ATP, and this is particularly true for the heart, kidneys, brain and liver. It’s estimated that mitochondria make up 40% of typical heart cells and 25% of typical liver cells. This gives some idea of how much energy these organs need each day, which is why providing them with an abundance of the micronutrients they require is essential.
The Heart, Kidneys, Brain and Liver Store Micronutrients
To ensure that the heart, kidneys, brain and liver have enough micronutrients to generate large amounts of ATP, they store several micronutrients in amounts more significant than the rest of the body. For example, the kidneys store vitamin A, iron, selenium, vitamins B2, B5, B6, and large amounts of vitamin B12. The brain stores DHA, B vitamins, vitamin A, vitamin C, vitamin D and vitamin E. Tightly regulated homeostatic mechanisms allow the brain to retain four times more vitamin B9 and 50 times more vitamin B5 (pantothenic acid) and vitamin B7 (biotin) than in the blood[52].
Micronutrient Deficiencies Cause Heart, Kidney, Brain and Liver Disease
It’s also important to note that micronutrient deficiencies are associated with increased diseases of the heart, kidneys, brain and liver. Due to the high metabolic demands of these organs, they require significantly more of the micronutrients that support ATP production. Micronutrients necessary to generate ATP include all the B vitamins, vitamins C, D, and E, iron, magnesium, copper, zinc, manganese, selenium, phosphorus and calcium[53]. There is also evidence that vitamin A plays a crucial role in ATP creation[54], and that betaine (trimethylglycine) plays a modulatory role in the production of ATP[55].
Neuroprotection: Where Supplements and Science Meet
Of great concern is the rapid rise of neurodegenerative diseases in recent decades. These diseases include Alzheimer's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Parkinson's disease, Huntington's disease, multiple system atrophy, tauopathies, and prion diseases. Remarkably, micronutrients have been shown to slow the progression of already-existing neurodegenerative conditions[56,57,58,59,60].
Although the heart is considered the most metabolically active organ, the brain, which comprises 2% of total body weight, consumes 20% of our daily energy; all in all, the brain produces a whopping 5.7kg (12.57 pounds) of ATP each day[61]. Thus, micronutrient deficiencies can impair the central nervous system's ATP production and produce excess oxidative stress in the body and brain[62,63,64]. Oxidative stress, which occurs when excess oxygen free radicals are produced in the mitochondria, is hypothesized to underlie aging and death[65]. Micronutrient deficiencies, particularly vitamin B12, cause an elevation of homocysteine, which is strongly implicated in the development of neurodegenerative diseases[66].
Thus micronutrient deficiencies can result in neurodegenerative diseases in various ways. Super Empowered Supplements has scoured the scientific literature to determine which micronutrient deficiencies are associated with neurodegenerative diseases, and have included these key nutrients in amounts sufficient to provide neuroprotective effects.
Micronutrient Deficiencies Are Associated With Neuropsychiatric Diseases
Just as micronutrient deficiencies are associated with neurodegenerative diseases, they are also associated with psychiatric diseases and mood disorders[67,68,69]. Our Super All-In-One Supplement Formula is rich in the micronutrients that improve mood, helping you to live your best life.
Let Cutting-Edge Research Guide Your Supplement Purchases
When it comes to science, we’ve done our homework. We’ve read thousands of top-quality studies demonstrating the health benefits of taking high-quality supplements. A few examples are included here: [69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90]. The research is in, and it conclusively shows that supplementing with micronutrients improves your health and minimizes the risk of developing common diseases.
Investing money in supplements and other healthcare products is based on what makes sense to your mind and what feels right in your body. We’ve carefully designed our Super All-In-One formula to do both. It’s important to know that you’re purchasing the highest-quality products, ones whose formulations are based on rigorous research to ensure your long-term health and wellbeing—and that you can actually feel working in your body.
References
1 Grieb P. Neuroprotective properties of citicoline: facts, doubts and unresolved issues. CNS Drugs. 2014 Mar;28(3):185-93. doi: 10.1007/s40263-014-0144-8. PMID: 24504829; PMCID: PMC3933742.
2 Marrs C, Lonsdale D. Hiding in Plain Sight: Modern Thiamine Deficiency. Cells. 2021 Sep 29;10(10):2595. doi: 10.3390/cells10102595. PMID: 34685573; PMCID: PMC8533683.
3 Mosegaard S, Dipace G, Bross P, Carlsen J, Gregersen N, Olsen RKJ. Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int J Mol Sci. 2020 May 28;21(11):3847. doi: 10.3390/ijms21113847. PMID: 32481712; PMCID: PMC7312377.
4 Scholefield M, Church SJ, Xu J, Patassini S, Hooper NM, Unwin RD, Cooper GJS. Substantively Lowered Levels of Pantothenic Acid (Vitamin B5) in Several Regions of the Human Brain in Parkinson's Disease Dementia. Metabolites. 2021 Aug 25;11(9):569. doi: 10.3390/metabo11090569. PMID: 34564384; PMCID: PMC8468190.
5 Huang YC, Lee MS, Wahlqvist ML. Prediction of all-cause mortality by B group vitamin status in the elderly. Clin Nutr. 2012 Apr;31(2):191-8. doi: 10.1016/j.clnu.2011.10.010. Epub 2011 Nov 8. PMID: 22071291.
6 Kennedy DO. B Vitamins and the Brain: Mechanisms, Dose and Efficacy--A Review. Nutrients. 2016 Jan 27;8(2):68. doi: 10.3390/nu8020068. PMID: 26828517; PMCID: PMC4772032.
7 Wang M, Phadke M, Packard D, Yadav D, Gorelick F. Zinc: Roles in pancreatic physiology and disease. Pancreatology. 2020 Oct;20(7):1413-1420. doi: 10.1016/j.pan.2020.08.016. Epub 2020 Sep 3. PMID: 32917512; PMCID: PMC7572834.
8 Schwalfenberg GK, Genuis SJ. The Importance of Magnesium in Clinical Healthcare. Scientifica (Cairo). 2017;2017:4179326. doi: 10.1155/2017/4179326. Epub 2017 Sep 28. PMID: 29093983; PMCID: PMC5637834.
9 Huskisson E, Maggini S, Ruf M. The role of vitamins and minerals in energy metabolism and well-being. J Int Med Res. 2007 May-Jun;35(3):277-89. doi: 10.1177/147323000703500301. PMID: 17593855.
10 Gogia S, Sachdev HS. Vitamin A supplementation for the prevention of morbidity and mortality in infants six months of age or less. Cochrane Database Syst Rev. 2011(10):CD007480. (PubMed)
11 Kumrungsee T, Zhang P, Chartkul M, Yanaka N and Kato N (2020) Potential Role of Vitamin B6 in Ameliorating the Severity of COVID-19 and Its Complications. Front. Nutr. 7:562051. doi: 10.3389/fnut.2020.562051
12 Bailey, S.W., Ayling, J.E. The pharmacokinetic advantage of 5-methyltetrahydrofolate for minimization of the risk for birth defects. Sci Rep 8, 4096 (2018). https://doi.org/10.1038/s41598-018-22191-2
13 Wan, L., Li, Y., Zhang, Z., Sun, Z., He, Y., & Li, R. (2018). Methylenetetrahydrofolate reductase and psychiatric diseases. Translational psychiatry, 8(1), 242. https://doi.org/10.1038/s41398-018-0276-6
14 O'Leary, F., & Samman, S. (2010). Vitamin B12 in health and disease. Nutrients, 2(3), 299–316. https://doi.org/10.3390/nu2030299
15 Huang X, Neckenig M, Sun J, Jia D, Dou Y, Ai D, Nan Z, Qu X. Vitamin E succinate exerts anti-tumour effects on human cervical cancer cells via the CD47-SIRPɑ pathway both in vivo and in vitro. J Cancer. 2021 May 5;12(13):3877-3886. doi: 10.7150/jca.52315. PMID: 34093795; PMCID: PMC8176246.
16 Jeon YM, Kwon Y, Lee S, Kim S, Jo M, Lee S, Kim SR, Kim K, Kim HJ. Vitamin B12 Reduces TDP-43 Toxicity by Alleviating Oxidative Stress and Mitochondrial Dysfunction. Antioxidants (Basel). 2021 Dec 29;11(1):82. doi: 10.3390/antiox11010082. PMID: 35052586; PMCID: PMC8773243.
17 Didangelos T, Karlafti E, Kotzakioulafi E, Margariti E, Giannoulaki P, Batanis G, Tesfaye S, Kantartzis K. Vitamin B12 Supplementation in Diabetic Neuropathy: A 1-Year, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2021 Jan 27;13(2):395. doi: 10.3390/nu13020395. PMID: 33513879; PMCID: PMC7912007.
18 Bailey RL, West KP Jr, Black RE. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab. 2015;66 Suppl 2:22-33. doi: 10.1159/000371618. Epub 2015 Jun 2. PMID: 26045325.
19 Barroso M, Handy DE, Castro R. The Link Between Hyperhomocysteinemia and Hypomethylation: Implications for Cardiovascular Disease. Journal of Inborn Errors of Metabolism and Screening. January 2017. doi:10.1177/2326409817698994
20 Gao, X., Zhang, Y., Schöttker, B. et al. Vitamin D status and epigenetic-based mortality risk score: strong independent and joint prediction of all-cause mortality in a population-based cohort study. Clin Epigenet 10, 84 (2018). https://doi.org/10.1186/s13148-018-0515-y
21 Abdel-rahman MS, Alkady EA, Ahmed S. Menaquinone-7 as a novel pharmacological therapy in the treatment of rheumatoid arthritis: A clinical study. Eur J Pharmacol. 2015 Aug 15;761:273-278.
22 Sato, T., Inaba, N., & Yamashita, T. (2020). MK-7 and Its Effects on Bone Quality and Strength. Nutrients, 12(4), 965. https://doi.org/10.3390/nu12040965
23 Harshman, S. G., & Shea, M. K. (2016). The Role of Vitamin K in Chronic Aging Diseases: Inflammation, Cardiovascular Disease, and Osteoarthritis. Current nutrition reports, 5(2), 90–98. https://doi.org/10.1007/s13668-016-0162-x
24 Fang, X., Wang, K., Han, D. et al. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose–response meta-analysis of prospective cohort studies. BMC Med 14, 210 (2016). https://doi.org/10.1186/s12916-016-0742-z
25 van Ballegooijen, A. J., Pilz, S., Tomaschitz, A., Grübler, M. R., & Verheyen, N. (2017). The Synergistic Interplay between Vitamins D and K for Bone and Cardiovascular Health: A Narrative Review. International journal of endocrinology, 2017, 7454376. https://doi.org/10.1155/2017/7454376
26 Filippini, T., Naska, A., Kasdagli, M. I., Torres, D., Lopes, C., Carvalho, C., Moreira, P., Malavolti, M., Orsini, N., Whelton, P. K., & Vinceti, M. (2020). Potassium Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. Journal of the American Heart Association, 9(12), e015719. https://doi.org/10.1161/JAHA.119.015719
27 Ghent WR. Eskin BA. Low DA. Hill LP. Iodine replacement in fibrocystic disease of the breast. Cancer J Surg. 1993;36:453–460. [PubMed]
28 Kessler J. Are there side effects when using supraphysiological levels of iodine in treatment regimens. In: Preedy VR, editor; Burrow GN, editor; Watson RR, editor. Comprehensive Handbook of Iodine., Nutritional, Endocrine and Pathological Aspects. Academic Press; San Diego, CA: 2009. pp. 801–810.
29 Anguiano B. Ledezma O. Juárez MA. Nuñez F. Aceves C. Therapeutic effect of iodine on human benign prostatic hyperplasia.. 14th International Thyroid Congress; Paris, France. Sep 11–16;; 2010. Abstract ITC2010-2585.
30 Vega-Riveroll L. Mondragón-Angeles P. Rojas J. Delgado G. González-Cedillo F. Romero J. Hernández-Pando R. Aceves C. Impaired nuclear translocation of estrogen receptor alfa could be associated with the antineoplastic effect of iodine in premenopausal breast cancer. Abstract presented at the 33rd Annual CRTC-AARC San Antonio Breast Cancer Symposium (SABCS); San Antonio, Texas. Dec 8–12;; 2010. Abstract P6-14-15.
31 Kaufman MW, DeParis S, Oppezzo M, et al. Nutritional Supplements for Healthy Aging: A Critical Analysis Review. American Journal of Lifestyle Medicine. 2024;0(0). doi:10.1177/15598276241244725
32 Huang YC, Lee MS, Wahlqvist ML. Prediction of all-cause mortality by B group vitamin status in the elderly. Clin Nutr. 2012 Apr;31(2):191-8. doi: 10.1016/j.clnu.2011.10.010. Epub 2011 Nov 8. PMID: 22071291.
33 Zhang D, Li Y, Lang X, Zhang Y. Associations of Serum Vitamin B6 Status and Catabolism With All-Cause Mortality in Patients With T2DM. J Clin Endocrinol Metab. 2022 Sep 28;107(10):2822-2832. doi: 10.1210/clinem/dgac429. Erratum in: J Clin Endocrinol Metab. 2022 Dec 17;108(1):e16. PMID: 35907182; PMCID: PMC9516105.
34 Ames BN. Prolonging healthy aging: Longevity vitamins and proteins. Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):10836-10844. doi: 10.1073/pnas.1809045115. Epub 2018 Oct 15. PMID: 30322941; PMCID: PMC6205492.
35 Chen Y, Hamidu S, Yang X, Yan Y, Wang Q, Li L, Oduro PK, Li Y. Dietary Supplements and Natural Products: An Update on Their Clinical Effectiveness and Molecular Mechanisms of Action During Accelerated Biological Aging. Front Genet. 2022 Apr 28;13:880421. doi: 10.3389/fgene.2022.880421. PMID: 35571015; PMCID: PMC9096086.
36 Dominguez LJ, Veronese N, Barbagallo M. Magnesium and the Hallmarks of Aging. Nutrients. 2024 Feb 9;16(4):496. doi: 10.3390/nu16040496. PMID: 38398820; PMCID: PMC10892939.
37 Fekete M, Szarvas Z, Fazekas-Pongor V, Feher A, Csipo T, Forrai J, Dosa N, Peterfi A, Lehoczki A, Tarantini S, Varga JT. Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients. 2022 Dec 22;15(1):47. doi: 10.3390/nu15010047. PMID: 36615705; PMCID: PMC9824801.
38 Roberts SB, Silver RE, Das SK, Fielding RA, Gilhooly CH, Jacques PF, Kelly JM, Mason JB, McKeown NM, Reardon MA, Rowan S, Saltzman E, Shukitt-Hale B, Smith CE, Taylor AA, Wu D, Zhang FF, Panetta K, Booth S. Healthy Aging-Nutrition Matters: Start Early and Screen Often. Adv Nutr. 2021 Jul 30;12(4):1438-1448. doi: 10.1093/advances/nmab032. Erratum in: Adv Nutr. 2021 Jul 30;12(4):1597-1598. PMID: 33838032; PMCID: PMC8994693.
39 Praveen G, Sivaprasad M, Reddy GB. Telomere length and vitamin B12. Vitam Horm. 2022;119:299-324. doi: 10.1016/bs.vh.2022.01.014. Epub 2022 Feb 25. PMID: 35337624.
40 Shlisky J, Bloom DE, Beaudreault AR, Tucker KL, Keller HH, Freund-Levi Y, Fielding RA, Cheng FW, Jensen GL, Wu D, Meydani SN. Nutritional Considerations for Healthy Aging and Reduction in Age-Related Chronic Disease. Adv Nutr. 2017 Jan 17;8(1):17-26. doi: 10.3945/an.116.013474. PMID: 28096124; PMCID: PMC5227979.
41 Mass General Brigham. "Third major study finds evidence that daily multivitamin supplements improve memory and slow cognitive aging in older adults." ScienceDaily. ScienceDaily, 18 January 2024. <www.sciencedaily.com/releases/2024/01/240118122110.htm>.
42 Bo, Y.; Xu, H.; Zhang, H.; Zhang, J.; Wan, Z.; Zhao, X.; Yu, Z. Intakes of Folate, Vitamin B6, and Vitamin B12 in Relation to All-Cause and Cause-Specific Mortality: A National Population-Based Cohort. Nutrients 2022, 14, 2253. https://doi.org/10.3390/nu14112253
43 Huskisson E, Maggini S, Ruf M. The role of vitamins and minerals in energy metabolism and well-being. J Int Med Res. 2007 May-Jun;35(3):277-89. doi: 10.1177/147323000703500301. PMID: 17593855.
44 Huskisson E, Maggini S, Ruf M. The role of vitamins and minerals in energy metabolism and well-being. J Int Med Res. 2007 May-Jun;35(3):277-89. doi: 10.1177/147323000703500301. PMID: 17593855.
45 Huskisson E, Maggini S, Ruf M. The role of vitamins and minerals in energy metabolism and well-being. J Int Med Res. 2007 May-Jun;35(3):277-89. doi: 10.1177/147323000703500301. PMID: 17593855.
46 Loren Cordain, S Boyd Eaton, Anthony Sebastian, Neil Mann, Staffan Lindeberg, Bruce A Watkins, James H O’Keefe, Janette Brand-Miller, Origins and evolution of the Western diet: health implications for the 21st century, The American Journal of Clinical Nutrition, Volume 81, Issue 2, February 2005, Pages 341–354, https://doi.org/10.1093/ajcn.81.2.341
47 https://www.cdc.gov/nutritionreport/pdf/4page_%202nd%20nutrition%20report_508_032912.pdf
48 Wallace TC, McBurney M, Fulgoni VL, 3rd. Multivitamin/mineral supplement contribution to micronutrient intakes in the United States, 2007-2010. J Am Coll Nutr. 2014;33(2):94-102. (PubMed)
49 Schwalfenberg, G. K., & Genuis, S. J. (2017). The Importance of Magnesium in Clinical Healthcare. Scientifica, 2017, 4179326. https://doi.org/10.1155/2017/4179326
50 Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, Later W, Heymsfield SB, Müller MJ. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr. 2010 Dec;92(6):1369-77. doi: 10.3945/ajcn.2010.29885. Epub 2010 Oct 20. PMID: 20962155; PMCID: PMC2980962.
51 Mishra P. K., Ying W., Nandi S. S., Bandyopadhyay G. K., Patel K. K., Mahata S. K. (2017). Diabetic cardiomyopathy: an immunometabolic perspective. Front. Endocrinol. 8:72. 10.3389/fendo.2017.00072
52 Kennedy DO. B Vitamins and the Brain: Mechanisms, Dose and Efficacy--A Review. Nutrients. 2016 Jan 27;8(2):68. doi: 10.3390/nu8020068. PMID: 26828517; PMCID: PMC4772032.
53 E. Wesselink, W.A.C. Koekkoek, S. Grefte, R.F. Witkamp, A.R.H. van Zanten,
Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence,
Clinical Nutrition,
Volume 38, Issue 3,
2019,
Pages 982-995,
ISSN 0261-5614,
https://doi.org/10.1016/j.clnu.2018.08.032.
(https://www.sciencedirect.com/science/article/pii/S0261561418324269)
54 Acin-Perez R, Hoyos B, Zhao F, Vinogradov V, Fischman DA, Harris RA, Leitges M, Wongsiriroj N, Blaner WS, Manfredi G, Hammerling U. Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis. FASEB J. 2010 Feb;24(2):627-36. doi: 10.1096/fj.09-142281. Epub 2009 Oct 7. PMID: 19812372; PMCID: PMC2812036.
55 Icksoo Lee,
Betaine is a positive regulator of mitochondrial respiration,
Biochemical and Biophysical Research Communications,
Volume 456, Issue 2,
2015,
Pages 621-625,
ISSN 0006-291X,
https://doi.org/10.1016/j.bbrc.2014.12.005.
(https://www.sciencedirect.com/science/article/pii/S0006291X14021706)
56 Kennedy DO. B Vitamins and the Brain: Mechanisms, Dose and Efficacy--A Review. Nutrients. 2016 Jan 27;8(2):68. doi: 10.3390/nu8020068. PMID: 26828517; PMCID: PMC4772032.
57 Calderón-Ospina CA, Nava-Mesa MO. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther. 2020 Jan;26(1):5-13. doi: 10.1111/cns.13207. Epub 2019 Sep 6. PMID: 31490017; PMCID: PMC6930825.
58 Marrs C, Lonsdale D. Hiding in Plain Sight: Modern Thiamine Deficiency. Cells. 2021 Sep 29;10(10):2595. doi: 10.3390/cells10102595. PMID: 34685573; PMCID: PMC8533683.
59 Jingshu Xu, Stefano Patassini, Paul Begley, Stephanie Church, Henry J. Waldvogel, Richard L.M. Faull, Richard D. Unwin, Garth J.S. Cooper,
Cerebral deficiency of vitamin B5 (d-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer’s disease,
Biochemical and Biophysical Research Communications,
Volume 527, Issue 3,
2020,
Pages 676-681,
ISSN 0006-291X,
https://doi.org/10.1016/j.bbrc.2020.05.015.
(https://www.sciencedirect.com/science/article/pii/S0006291X20309190)
60 Wu Y, Zhao Z, Yang N, Xin C, Li Z, Xu J, Ma B, Lim KL, Li L, Wu Q, Yu C, Zhang C. Vitamin B12 Ameliorates the Pathological Phenotypes of Multiple Parkinson's Disease Models by Alleviating Oxidative Stress. Antioxidants (Basel). 2023 Jan 9;12(1):153. doi: 10.3390/antiox12010153. PMID: 36671015; PMCID: PMC9854476.
61 Zhu XH, Qiao H, Du F, Xiong Q, Liu X, Zhang X, Ugurbil K, Chen W. Quantitative imaging of energy expenditure in human brain. Neuroimage. 2012 May 1;60(4):2107-17. doi: 10.1016/j.neuroimage.2012.02.013. Epub 2012 Feb 17. PMID: 22487547; PMCID: PMC3325488.
62 Kocot J, Luchowska-Kocot D, Kiełczykowska M, Musik I, Kurzepa J. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders? Nutrients. 2017 Jun 27;9(7):659. doi: 10.3390/nu9070659. PMID: 28654017; PMCID: PMC5537779.
63 van de Lagemaat EE, de Groot LCPGM, van den Heuvel EGHM. Vitamin B12 in Relation to Oxidative Stress: A Systematic Review. Nutrients. 2019 Feb 25;11(2):482. doi: 10.3390/nu11020482. PMID: 30823595; PMCID: PMC6412369.
64 Jeon Y-M, Kwon Y, Lee S, Kim S, Jo M, Lee S, Kim SR, Kim K, Kim H-J. Vitamin B12 Reduces TDP-43 Toxicity by Alleviating Oxidative Stress and Mitochondrial Dysfunction. Antioxidants. 2022; 11(1):82. https://doi.org/10.3390/antiox11010082
65 Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018 Apr 26;13:757-772. doi: 10.2147/CIA.S158513. PMID: 29731617; PMCID: PMC5927356.
66 Serin HM, Arslan EA. Neurological symptoms of vitamin B12 deficiency: analysis of pediatric patients. Acta Clin Croat. 2019 Jun;58(2):295-302. doi: 10.20471/acc.2019.58.02.13. PMID: 31819326; PMCID: PMC6884369.
67 Dhir S, Tarasenko M, Napoli E, Giulivi C. Neurological, Psychiatric, and Biochemical Aspects of Thiamine Deficiency in Children and Adults. Front Psychiatry. 2019 Apr 4;10:207. doi: 10.3389/fpsyt.2019.00207. PMID: 31019473; PMCID: PMC6459027.
68 Sofyan M, Fitriani DY, Friska D, Basrowi RW, Fuady A. B Vitamins, work-related stress and emotional mental disorders: a cross-sectional study among nurses in Indonesia. Nurs Open. 2022 Jul;9(4):2037-2043. doi: 10.1002/nop2.1213. Epub 2022 Apr 17. PMID: 35434916; PMCID: PMC9190671.
69 Vitamin B12 Levels and Psychiatric Symptomatology: A Case Series
Naveen Jayaram, M.B.B.S., M.D., Mukund G. Rao, M.B.B.S., M.D., Aniruddh Narasimha, M.B.B.S, Dhanya Raveendranathan, M.B.B.S., M.D., Shivarama Varambally, M.B.B.S., M.D., Ganesan Venkatasubramanian, M.B.B.S., M.D., and B. N. Gangadhar, M.B.B.S., M.D.
Published Online:1 Apr 2013https://doi.org/10.1176/appi.neuropsych.12060144
69 Anand, P., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., … Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical research, 25(9), 2097–2116. doi:10.1007/s11095-008-9661-9
70 Colditz GA. Carpe Diem: time to seize the opportunity for cancer prevention. Am Soc Clin Oncol Educ Book. 2014:8-12. doi: 10.14694/EdBook_AM.2014.34.8. PMID: 24857053.
71 Rezende LFM, Murata E, Giannichi B, Tomita LY, Wagner GA, Sanchez ZM, Celis-Morales C, Ferrari G. Cancer cases and deaths attributable to lifestyle risk factors in Chile. BMC Cancer. 2020 Jul 25;20(1):693. doi: 10.1186/s12885-020-07187-4. PMID: 32711508; PMCID: PMC7382839.
72 Lanting CI, de Vroome EM, Elias SG, van den Brandt PA, van Leeuwen FE, Kampman E, Kiemeney LA, Peeters PH, de Vries E, Bausch-Goldbohm RA. Bijdrage van leefstijlfactoren aan kanker: secundaire analyse van Nederlandse gegevens voor 2010 met een voorspelling voor 2020 [Contribution of lifestyle factors to cancer: secondary analysis of Dutch data over 2010 and a projection for 2020]. Ned Tijdschr Geneeskd. 2014;159:A8085. Dutch. PMID: 25515397.
73 Ha L, Tran A, Bui L, Giovannucci E, Mucci L, Song M, Le PD, Hoang M, Tran H, Kim G, Pham T. Proportion and number of cancer cases and deaths attributable to behavioral risk factors in Vietnam. Int J Cancer. 2023 Aug 1;153(3):524-538. doi: 10.1002/ijc.34549. Epub 2023 May 2. PMID: 37129148.
74 Islami F, Goding Sauer A, Miller KD, Siegel RL, Fedewa SA, Jacobs EJ, McCullough ML, Patel AV, Ma J, Soerjomataram I, Flanders WD, Brawley OW, Gapstur SM, Jemal A. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin. 2018 Jan;68(1):31-54. doi: 10.3322/caac.21440. Epub 2017 Nov 21. PMID: 29160902.
75 Donaldson MS. Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutr J. 2004 Oct 20;3:19. doi: 10.1186/1475-2891-3-19. PMID: 15496224; PMCID: PMC526387.
76 Divisi D, Di Tommaso S, Salvemini S, Garramone M, Crisci R. Diet and cancer. Acta Biomed. 2006 Aug;77(2):118-23. PMID: 17172193.
77 Palmer S. Diet, nutrition, and cancer. Prog Food Nutr Sci. 1985;9(3-4):283-341. PMID: 3010379.
78 Fagbohun OF, Gillies CR, Murphy KPJ, Rupasinghe HPV. Role of Antioxidant Vitamins and Other Micronutrients on Regulations of Specific Genes and Signaling Pathways in the Prevention and Treatment of Cancer. Int J Mol Sci. 2023 Mar 23;24(7):6092. doi: 10.3390/ijms24076092. PMID: 37047063; PMCID: PMC10093825.
79 Irimie AI, Braicu C, Pasca S, Magdo L, Gulei D, Cojocneanu R, Ciocan C, Olariu A, Coza O, Berindan-Neagoe I. Role of Key Micronutrients from Nutrigenetic and Nutrigenomic Perspectives in Cancer Prevention. Medicina (Kaunas). 2019 Jun 18;55(6):283. doi: 10.3390/medicina55060283. PMID: 31216637; PMCID: PMC6630934.
80 Pecora F, Persico F, Argentiero A, Neglia C, Esposito S. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients. 2020 Oct 20;12(10):3198. doi: 10.3390/nu12103198. PMID: 33092041; PMCID: PMC7589163.
81 Berger MM, Herter-Aeberli I, Zimmermann MB, Spieldenner J, Eggersdorfer M. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin Nutr ESPEN. 2021 Jun;43:39-48. doi: 10.1016/j.clnesp.2021.03.012. Epub 2021 Mar 24. PMID: 34024545; PMCID: PMC7987506.
82 Stevens GA, Beal T, Mbuya MNN, Luo H, Neufeld LM; Global Micronutrient Deficiencies Research Group. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys. Lancet Glob Health. 2022 Nov;10(11):e1590-e1599. doi: 10.1016/S2214-109X(22)00367-9. PMID: 36240826; PMCID: PMC10918648.
83 Bailey RL, West KP Jr, Black RE. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab. 2015;66 Suppl 2:22-33. doi: 10.1159/000371618. Epub 2015 Jun 2. PMID: 26045325.
84 Huang X, Neckenig M, Sun J, Jia D, Dou Y, Ai D, Nan Z, Qu X. Vitamin E succinate exerts anti-tumour effects on human cervical cancer cells via the CD47-SIRPɑ pathway both in vivo and in vitro. J Cancer. 2021 May 5;12(13):3877-3886. doi: 10.7150/jca.52315. PMID: 34093795; PMCID: PMC8176246.
85 Yin Y, Ni J, Chen M, DiMaggio MA, Guo Y, Yeh S. The therapeutic and preventive effect of RRR-alpha-vitamin E succinate on prostate cancer via induction of insulin-like growth factor binding protein-3. Clin Cancer Res. 2007 Apr 1;13(7):2271-80. doi: 10.1158/1078-0432.CCR-06-1217. PMID: 17404112.
86 Bomer N, Pavez-Giani MG, Grote Beverborg N, Cleland JGF, van Veldhuisen DJ, van der Meer P. Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? J Intern Med. 2022 Jun;291(6):713-731. doi: 10.1111/joim.13456. Epub 2022 Feb 9. PMID: 35137472; PMCID: PMC9303299.
87 Wong AP, Niedzwiecki A, Rath M. Myocardial energetics and the role of micronutrients in heart failure: a critical review. Am J Cardiovasc Dis. 2016 Sep 15;6(3):81-92. PMID: 27679743; PMCID: PMC5030388.
88 Dragan S, Buleu F, Christodorescu R, Cobzariu F, Iurciuc S, Velimirovici D, Xiao J, Luca CT. Benefits of multiple micronutrient supplementation in heart failure: A comprehensive review. Crit Rev Food Sci Nutr. 2019;59(6):965-981. doi: 10.1080/10408398.2018.1540398. Epub 2018 Dec 3. PMID: 30507249.
89 Soukoulis V, Dihu JB, Sole M, Anker SD, Cleland J, Fonarow GC, Metra M, Pasini E, Strzelczyk T, Taegtmeyer H, Gheorghiade M. Micronutrient deficiencies an unmet need in heart failure. J Am Coll Cardiol. 2009 Oct 27;54(18):1660-73. doi: 10.1016/j.jacc.2009.08.012. PMID: 19850206.
90 Cvetinovic N, Loncar G, Isakovic AM, von Haehling S, Doehner W, Lainscak M, Farkas J. Micronutrient Depletion in Heart Failure: Common, Clinically Relevant and Treatable. Int J Mol Sci. 2019 Nov 11;20(22):5627. doi: 10.3390/ijms20225627. PMID: 31717934; PMCID: PMC6888526.
Copyright © 2024 Super Empowered Supplements, LLC - All Rights Reserved. Call us toll free at 1-888-787-7697 (888-SUP-POWR)
This website uses cookies (keto!) to analyze website traffic and optimize your website experience. Ours are freshly baked and hot out of the oven. They're grain-free and mighty delicious.